Bifidobacterium lactis HN019

strain image
Bifidobacterium lactis HN019 under the microscope


HN019 is a strain from the Bifidobacterium lactis species of bacteria. It is sometimes referred to as Bifidobacterium lactis DR10TM. B. lactis HN019 is a gram positive, anaerobic, non spore forming rod shaped bacterium. The B. lactis HN019 strain was originally isolated from a yogurt source.


Researched in: new-borns, children, adults, pregnant women and the elderly

strain name
You are here: The HN019 strain is part of the lactis species and the Bifidobacterium genus

Bifidobacterium lactis HN019 – Safety and Survival

B. lactis HN019 is a probiotic strain with research demonstrating its safety and survival to reach the gut alive.

Bifidobacterium lactis HN019 and gastrointestinal issues

Poor intestinal health can manifest as a range of gastrointestinal symptoms (GI) including constipation, diarrhoea, bloating and abdominal pains. This can sometimes present as irritable bowel syndrome (IBS). Many over the counter medications offer short term relief but often do not get to the root cause. Probiotics have been researched for IBS and general GI symptoms. B. lactis HN019 has been shown to alleviate GI issues and support gut motility.

reduction in number of gi
Graph 1 - The changes in the number of GI symptoms over a 14 day supplementation period with 17.2 billion CFU of B. lactis HN019


To assess for WGTT, participants ingested radiopaque markers and underwent x-rays to identify the speed of transit when taking B. lactis HN019. WGTT significantly improved in both probiotic groups; 33% reduction in the high dose and 25% in the lower dose. No changes were noted in the placebo group. These results suggest B. lactis HN019 is able to promote gut regularity naturally and safely. This could be particularly beneficial to those who suffer with constipation  (Waller P et al., 2011).

B. lactis HN019 has been shown to improve digestive symptoms and support gut regularity. This was also confirmed in a meta-analysis in 2016 which assessed a range of probiotics on intestinal transit time. The analysis reviewed 15 RCT including 675 participants. The authors concluded only two strains showed most promise in reducing transit time, one of which was B. lactis HN019 as the strain showed medium to large treatment effects (Miller L et al., Contemporary meta-analysis of short-term probiotic consumption on gastrointestinal transit, 2016) .

Bifidobacterium lactis HN019 on the microbiome

Improving the gut microbial composition may not only improve gut health, but this can have systemic effects including our mental wellbeing, skin health, metabolic health and much more. Prebiotics have extensive research on their ability to boost beneficial bacteria, probiotics less so.  B. lactis HN019 has been shown to elicit favourable modulatory effect on the gut microbiota.

Bifidobacterium lactis HN019 and Modulation of the Immune System

The potential for our gut microbiome to affect our immune function is being widely explored. Emerging evidence indicates that our resident bacteria do interact with and influence the activity of our immune cells, which include phagocytic cells (monocytes, macrophages, neutrophils), cytokines and immunoglobins.

Taxonomic breakdown of B. lactis HN019


Bifidobacterium lactis HN019 and Children

Growing evidence suggests that a healthy gut microbiota is associated with good health in children. In fact, our health in early life may dictate our health and wellbeing in later childhood or adulthood. Early childhood therefore may present an ideal window of opportunity to intervene with probiotics.

Bifidobacterium lactis HN019 and Metabolic Disorders

Metabolic disorders are a growing health concern. They may manifest as a variety of different health conditions including obesity, diabetes, and thyroid dysfunction. Symptoms are typically a large waist circumference, elevated blood sugar/blood pressure/cholesterol levels, increased thirst and urination, fatigue, and blurred vision. Individuals are considered to have metabolic syndrome (MetS) when they display at least three of the classic symptoms, and there is an increased risk of cardiovascular problems in affected individuals. Probiotics are one of the natural interventions which are being studied to assess their potential to support such conditions.


Authors: Information on this strain was gathered by Joanna Scott-Lutyens BA (hons), DipION, Nutritional Therapist; and Kerry Beeson, BSc (Nut.Med) Nutritional Therapist; and Dr Kate Stephens PhD Food and Microbial Sciences; Gut Microbiology (University of Reading), BSc Medical Microbiology.

Last updated – 9th June 2020

As some properties & benefits of probiotics may be strain-specific, this database provides even more detailed information at strain level. Read more about the strains that we have included from this genus below.

Bifidobacterium lactis strains: Bifidobacterium lactis Bi-07Bifidobacterium lactis BB-12®Bifidobacterium lactis Bl-04.

Bifidobacterium infantis strains: Bifidobacterium infantis 35624.

Bifidobacterium breve strains: Bifidobacterium breve M-16V®.

For more information and the latest research on probiotics, please visit the Probiotic Professionals pages.


Bernini L et al. (2016). Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomised trial. Effects of probiotics on metabolic syndrome. Nutrition, 32(6):716-9.

Chiang B et al. (2000). Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimisation and definition of cellular immune responses. Eur J Clin Nutr, 54: 849-855.

Dekker J et al. (2009). Safety aspects of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium animalis subs. lactis HN019 in human infants aged 0-2. International Dairy Journal, 149-154 .

Gill H et al. (2001). Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr, 74: 833-839.

Gopal P et al. (2003). Effects of the consumption of Bifidobacterium lactis HN019 (DR10TM) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects’. Nutr Res, 23: 1313-1328.

Hemalatha R et al. (2014). A Community-based Randomised Double Blind Controlled Trial of Lactobacillus paracasei and Bifidobacterium lactis on Reducing Risk for Diarrhoea and Fever in Preschool Children in an Urban Slum in India. European Journal of Nutrition & Food Safety, 4(4): 325-341.

Ibarra A et al. (2018). Effects of 28-day Bifidobacterium animalis subsp. lactis HN019 supplementation on colonic transit time and gastrointestinal symptoms in adults with functional constipation: A double-blind, randomized, placebo-controlled, and dose-ranging trial. Gut Microbes , 9 (3): 236-251.

Ibarra A et al. (2018). Effects of 28-day Bifidobacterium Animalis Subsp. Lactis HN019 Supplementation on Colonic Transit Time and Gastrointestinal Symptoms in Adults With Functional Constipation: A Double-Blind, Randomized, Placebo-Controlled, and Dose-Ranging Trial. Gut Microbes, 9(3):236-251.

Magro D et al. (2014). Effect of yogurt containing polydextrose, Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019: a randomised, double-blind, controlled study in chronic constipation. Nutr J., 24;13:75. doi: 10.1186/1475-2891-13-75.

Miller L et al. (2016). Contemporary meta-analysis of short-term probiotic consumption on gastrointestinal transit. World Journal of Gastroenterology, 22(21):5122-5131.

Miller L et al. (2017). The Effect of Bifidobacterium animalis ssp. lactis HN019 on Cellular Immune Function in Healthy Elderly Subjects: Systematic Review and Meta-Analysis. Nutrients, 9(3):191.

Oswari H. et al. (2013 ). Comparison of stool microbiota compositions, stool alpha1-antitrypsin and calprotectin concentrations, and diarrhoeal morbidity of Indonesian infants fed breast milk or probiotic/prebiotic-supplemented formula. J Paediatr Child Health, 49(12): 1032-1039.

Prasad, J. e. (2013). Detection of viable Bifidobacterium lactis HN019 (DR10™) in stools of children during a synbiotic dietary intervention trial. Int Dairy J, 30(2):64-67.

Prescott SL et al. (2008). Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood IFNy and breast milk transforming growth factor B and immunoglobin A detection. Clinical and experimental Allergy , 38 (10): 1606- 1614.

Sazawal S et al. (2010). Effects of Bifidobacterium Lactis HN019 and Prebiotic Oligosaccharide Added to Milk on Iron Status, Anemia, and Growth Among Children 1 to 4 Years Old. J Pediatr Gastroenterol Nutr, 51(3):341-6.

Waller P et al. (2011). Dose-response effect of Bifidobacterium lactis HN019 on whole gut. Scandinavian Journal of Gastroenterology,, 46: 1057–1064.